

Security and Privacy in Car2Car Adhoc Networks

Antonio Kung Trialog www.trialog.com

CybersecureCar 2016

Introduction

 French SME
 Involved since 2002 in security and privacy for connected vehicles

ENABLING INNOVATION SINCE 1987

Background

Integration of Security and Privacy

- Adhoc network viewpoint
 - Experience from ISE project
- Connected vehicle viewpoint
 - Privacy: Experience from PRIPARE project
 - Big data: Experience from AUTOMAT project

Conclusion

Security and Privacy Issues

Security

- A car is connected and therefore can be hacked
- A car is part of the Internet of things
- A car is a system within systems

Privacy

- A car is connected and therefore can be tracked
- A car can collect data
 - IoT, Big data, Cloud

www.autoblog.com/2014/08/26/privacy-data-ford-connected-car-concern/

- Adhoc Networks
 - V2V: Vehicle-to-Vehicle
 - V2I: Vehicle-to-Infrastructure (RSU: Road Side Unit)
- Type of communication
 ETSI TC ITS
 - ITS G5
 - allocated spectrum
 (5,85 5,925 Ghz)
 - IEEE 802.11p link
- Type of messages
 Broadcast/Geocast

CAM: Cooperative Awareness Messages

- Vehicle dynamics info
 - Position,
 - Speed,
 - Heading
 - ...

DENM: Decentralized Environmental Notification Messages

- Information on dynamic environment
 - Accident ahead,
 - Traffic jam ahead

15/06/2016

Some Research Projects in Europe

- Authenticity and Integrity
 - Use signatures
 - 1000 verifications per second
 - PRESERVE and C2C-CC specifications
- Avoid tracking / No fixed address
 - Use pseudonyms certificates (PC)
 - Short-term certificates
 - Changed according to policies

References today

- US Secure Message and Certificate Format
 - IEEE 1609.2
- US Cryptography
 - IEEE 1609.3
- Reference Architecture
 - ETSI TS 102 940
- Trust and Privacy Management (enrollment and PKI)
 - ETSI TS 102 941
- Certificate Format
 - ETSI TS 103 097
- CAM Format
 - ETSI EN 302 637-2
- DENM Format
 - ETSI EN 302 637-3
 - MoU (2011)Protection Profiles

♦ Background

Integration of Security and Privacy

- Adhoc network viewpoint
 - Experience from ISE project
- Connected vehicle viewpoint
 - Privacy: Experience from PRIPARE project (Privacy)
 - Big data: Experience from AUTOMAT project

Conclusion

ISE Project

ITS SEcurity

- Part of SystemX
 - Technology Research Institute)
 - Member ETSI and Car2Car consortium
- http://www.irt-systemx.fr/en/project/ise/

ISE Objectives

- Cost effective C-ITS security system
- Integrates infrastructure PKI
- Methods and tools for assurance and trust
- Cooperation with C-ITS pilot (SCOOP@F part 2)
 - https://ec.europa.eu/inea/en/connectingeurope-facility/cef-transport/projects-bycountry/multi-country/2014-eu-ta-0669-s

Example of Public Key Infrastructure

- Purpose: management of pseudonyms certificates
- Enables
 - Authentication & authorization of senders
 - Integrity: receivers verify data via digital signatures
- Certificate Authority Structure
 - Root CA

5/06/2016

- Long term CA
 - Register vehicle
- Pseudonym CA
 - Provides pseudonyms

How Pseudonym Certificates Work

13

- Vehicles and Road side units receive certificates from PCA
- Pseudonym certificates frequently changed
- Secure communications between nodes
 - Vehicle and RSU

CAs

Extension proposed by ISE for Privacy

Request for pseudonyms to PCA

ΤΡίΔΙ ΩG

5/06/2016

- One pseudonym per request only!
 - PCA cannot link pseudonyms
- Authentication of vehicles during request by LTCA only
 - PCA cannot identify vehicles
 - Part of request is encrypted and only readable by LTCA

- Organisational
 - PKI deployment
- Operational
 - Pseudonym change policy
 - Revocation
 - Maintainability of crypto
 - Assurance
 - Integrating security with safety

Governance

- who is in charge?
 - European PKI?
 - National PKIs?
 - Car Manufacturer PKI?
 - Road operators PKI?

Root CAs?

- Cross-certification issues?
- Usage of Trusted-service Status List (TSL) including Root CAs and PCAs certificates?

Protocol with PKI not standardized

Find the suitable policy?

- Change at startup, periodic change?
 - Need for standardization
- Communication stack "agility" issue
 - Implementation still using previous pseudonym
 - Node may blocked a while before being able to transmit
- Conflicts of interest between stakeholders

Road operators

- Needs to track vehicles for a while (traffic monitoring)
- e.g. 1 pseudonym change every 2 hours)
- Data protection authorities
 - Each message has a different pseudonym

- Revoking certificates Retirement Car stolen . . . Typical approach Use Certificate Revocation List (CRL) Issues Millions of vehicles
 - CRLs need to be distributed to every vehicle?
 - Real-time updates?
 - Regional CRLs?

- Need to change encryption algorithms in case of security issue
- Maintainability
 - How to update V2X stack with new algorithms/parameters?
- Interoperability
 - e.g. ETSI standard contains placeholders for extension
 - But operational process is not decided yet

Assurance

Common Criteria too costly

- Focus on evaluation assurance mainly
- Issues
 - Cost
 - Need to integrate in automotive engineering process
 - System of systems
 - Product evolutions
- ISE multidimensional types of assurance
 - Evaluation + Maintainability + Observability assurance level = Overall Trust assurance level?

Merge safety risk analysis and security risk analysis

Integrate Security-by-design in automotive design process

- SAE J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle Systems
- Proposal for ISO standard: Automotive Security Engineering TC22

ASIL Automotive Safety Integration Level

Automotive Trust Integration Level?

♦ Background

Integration of Security and Privacy

- Adhoc network viewpoint
 - Experience from ISE project

Connected vehicle viewpoint

- Privacy: Experience from PRIPARE project (Privacy)
- Big data: Experience from AUTOMAT project

Conclusion

* PRIPARE

European Regulation Enter into force on May 24th 2016 Fully applied on May 25th 2018

Privacy-by-design (PbD) and by-default

Privacy Impact Assessment (PIA)

- Data Protection Officers
 - All public authorities and companies processing personal data on a large scale
- Sanctions for breaches
 - up to 20,000,000 EUR
 - up to 4% of the annual worldwide turnover

Issues

- Integrating Privacy Management in Supply Chain
- Integrating Privacy Management in Lifecycle
- New types of threats
- New properties

Stakeholder		Legal Compliance Level	Management Level	System Lifecycle Level	
Demand side	Policy maker	e.g. Compliance Check			
	Operator Data Controller	Regulation	Privacy Impact Assessment	Privacy-by-Design	
	Operator Data processor	GDPR	PIA	PbD	
Supply side	Supplier	e.g. Operators Requirements			

26

Integrating privacy-by-design

27

A Glimpse on the Process

Property	Description	Threat
Authentication	The identity of users is established (or you're willing to accept anonymous users).	Spoofing
Integrity	Data and system resources are only changed in appropriate ways by appropriate people.	Tampering
Nonrepudiation	Users can't perform an action and later deny performing it.	Repudiation
Confidentiality	Data is only available to the people intended to access it.	nformation disclosure
Availability	Systems are ready when needed and perform acceptably.	D enial Of Service
Authorization	Users are explicitly allowed or denied access to resources.	Elevation of privilege

15/06/2016

LINDDUN Privacy Threats Analysis

Туре	Property	Description	Threat
Hard privacy	Unlinkability	Hiding the link between two or more actions, identities, and pieces of information.	Linkability
	Anonymity	Hiding the link between an identity and an action or a piece of information	dentifiability
	Plausible deniability	Ability to deny having performed an action that other parties can neither confirm nor contradict	N on- repudiation
	Undetectability and unobservability	Hiding the user's actvities	Detectability
Security	Confidentiality	Hiding the data content or controlled release of data content	Disclosure of information
Soft Privacy	Content awareness	User's consciousness regarding his own data	Unawareness
	Policy and consent compliance	Data controller to inform the data subject about the system's privacy policy, or allow the data subject to specify consents in compliance with legislation	N on compliance

30

https://distrinet.cs.kuleuven.be/software/linddun/catalog.php

Beyond CIA

31

From ULD: ieee-security.org/TC/SPW2015/IWPE/2.pdf

32

- Using anonymized vehicle data in other crosssectorial contexts
 - Socially beneficial services
 - Economically relevant services
- Protecting customer's legitimate privacy
- Example of scenario
 - Data collected only upon customer consent
 - Data managed by customer (switch of paradigm from CRM to VRM – Vendor Relationship Management)

Conclusion

Cybersecurity for connected vehicles: a system of system practice in the making

- Integrate security-by-design
- Integrate privacy-by-design
- New projet in France
 - CTI: Cybersecurity in Intelligent Transport
 - Combines automotive, aeronautic and railway domains
 - Objective: Guidelines on cybersecurity for ITS
 - Risk analysis
 - Assurance process
 - Merging security and safety

Thanks

35